Integrating Auto-Associative Neural Networks with Hotelling T2 Control Charts for Wind Turbine Fault Detection
نویسندگان
چکیده
This paper presents a novel methodology to detect a set of more suitable attributes that may potentially contribute to emerging faults of a wind turbine. The set of attributes were selected from one-year historical data for analysis. The methodology uses the k-means clustering method to process outlier data and verifies the clustering results by comparing quartiles of boxplots, and applies the auto-associative neural networks to implement the residual approach that transforms the data to be approximately normally distributed. Hotelling T2 multivariate quality control charts are constructed for monitoring the turbine’s performance and relative contribution of each attribute is calculated for the data points out of upper limits to determine the set of potential attributes. A case using the historical data and the alarm log is given and illustrates that our methodology has the advantage of detecting a set of susceptible attributes at the same time compared with only one independent attribute is monitored.
منابع مشابه
A Self-Reconstructing Algorithm for Single and Multiple-Sensor Fault Isolation Based on Auto-Associative Neural Networks
Recently different approaches have been developed in the field of sensor fault diagnostics based on Auto-Associative Neural Network (AANN). In this paper we present a novel algorithm called Self reconstructing Auto-Associative Neural Network (S-AANN) which is able to detect and isolate single faulty sensor via reconstruction. We have also extended the algorithm to be applicable in multiple faul...
متن کاملRobust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks
Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...
متن کاملOn the use of multi-agent systems for the monitoring of industrial systems
The objective of the current paper is to present an intelligent system for complex process monitoring, based on artificial intelligence technologies. This system aims to realize with success all the complex process monitoring tasks that are: detection, diagnosis, identification and reconfiguration. For this purpose, the development of a multi-agent system that combines multiple intelligences su...
متن کاملImproving Data-based Wind Turbine Using Measured Data Foggy Method
The purpose of this paper is to improve the modeling of the data-driven wind turbine system that receives data from noise signals. Most of the data on industrial systems is noisely and data noise is inevitable and natural. The method and idea proposed in this paper, Data Fogging, significantly reduce the impact of noise on data-driven wind turbine system modeling, which is the basis of this met...
متن کاملRobust Model- Based Fault Detection and Isolation for V47/660kW Wind Turbine
In this paper, in order to increase the efficiency, to reduce the cost and to prevent the failures of wind turbines, which lead to an extensive break down, a robust fault diagnosis system is proposed for V47/660kW wind turbine operated in Manjil wind farm, Gilan province, Iran. According to the acquired data from Iran wind turbine industry, common faults of the wind turbine such as sensor fault...
متن کامل